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7. Introduction

THE genesis of the present investigation is a remark of the late Sir Thomas Little
Heath that the Indian Cyclic Method of solving the equation x2— Nyp%= 1
in integers due to Bhaskara in 1150, is* ‘remarkably enough, the same as
that which was rediscovered and expounded by Lagrange in 1768 °, We have
pointed out elsewheret that the Indian method implies a half-regular continued
fraction (/.r.c.f., for brevity) with certain noteworthy properties which have
not been previously investigated. If we remember that it was Lagrange
who was mainly responsible for the neglect of the /.r.c.f. since he showed,
by an example, how it would never uniformly lead to the solution of the so-
called Pellian equation, we can appreciate the distance between Lagrange’s
simple continued fraction and the one discussed in this paper. This new
continued fraction, we call, the nearest square continued fraction or Bhaskara
continued fraction (B.c.f. for brevity), the natural sequel to Bhaskara’s cyclic
method. The whole theory can be developed as it were from * scratch * with
the help of the simplest mathematics known to the Hindus about the fifth
century A.D.

2. The New Continued Fraction Defined

2-1. A quadratic surd of the form P—_l-& is usually expressed as
the sum and not as the difference of an integer and a positive proper fraction.
We now exploit both the representations at once. Herein lies the novelty
of procedure.

VR .. , e

Definition—The surd }BT—QQ‘ is said to be in the standard form, if R is

R~ P2

a non-square positive integer, and P ( == 0), Q, are integers havin
d Q 24 2

.. & : . . R
no common factor, while if P is zero, it is sufficient that Q and Q are

relatively prime integers.

* Sec page 285, Diophantus of Alexandria, by Sir T. L. Heath, Cambridge, 1910.
T See pages 602-604, Curr. Sci., Vol. VI, No. 12, June 1938,
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We shall first set down some clementary results.

.. ; . P
Turgorem I. If a is the greatest integer in the standard surd Q}/--R,
P++vR Q’ . Q" P’ ++v/R
gl S T o P s SPE Y L o1 B ., then ; and
Q TP+ YR P+ VR Q

B 6,\/}" are also standard surds with the following propertics :

() P—P=Q; PP+P=Q+Q; Q-1Q«P il Q=Q;
Q+3iQ«PifQ <Q.
Gi) Q2+ Q"2+ Q*+ 2Q'Q"+ 2QQ’ — 2QQ" =4R.
(i) If [Q'], 1Q"], 1 Q] be all greater than 4/R, then [P’[, P, 4+ Q]

are all greater than 4/2R and at least one of [Q'|, 1Q"| is less than

1 |Ql; also P’, P’, Q’, Q" are all numerically less than |Q].
(iv) If |Q| < 24/R, then Q’ and Q" are both positive and at least one of
them is less than +/R; if |Q| < +/2R, then one of P, P” is

positive; if |Q|< v/R, P, P’ are both positive and iess
than 24/R.

(v) If |Q| < 2 ¥R, then Q' % Q” according as
Q@ 5,. VR VER-
5 —

P yR = 2
if |Q| > 2R, then [Q'| Z|Q"| according as Q= VR
3 =5 P+ ’\,‘/R = 2 Q

Proof—(i) and (ii) follow readily from the well-known relations i—
(1) P=aQ—-P; Q) P=+-1JQ-P; ) F*= R —QQ';

(4) P"* =R + QQ". The elements of the triplet (B—ﬁ-épz, P, Q) can be

expressed as the sum of integral multiples of the elements of the triplet
R’_— P’2 ’ ’ . 5 /_—
Q@ 25 Q) and vice-versa. Hence &Gﬂ‘

surd, when Pwin/_R_ is one. Similarly P_'(S\/B is also standard.
From (i), (Q' — Q"+ Q? +4QQ" = 4R = (Q" + Q" = Q* —4QQ"
— (Q'+ Q"— Q)+ 4QQ" (3)
If |Q, |Q’], |Q"] be all greater than vR. then
1QQ’], 1QQ"], |Q'Q”| > R implies Q'Q" < 0, QQ" >0, and QQ" < 0.

Hence Q, Q" are of the same sign and different from that of Q. (a)

_)r

is also a standard
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Again, Q— - and Q— e itiv ' i
g PPLUR P U R are positive proper fractions, so that if
Q’, Q" are of opposite signs, so also are the pairs P’ +~+/R, P+ 4/R; and
P’, P": and the [atter are absolutely greater than 4/R. (B)

From (3), (4) and (a), |P’| > V2R, [P"] > +/2R;

From (i) and (B), |Q| = |P'| - |P"| > 2+2R; and one of P’, P" is
not absolutely greater than + 1Q]. S _ = 585 2

From (3) and (a), | QQ’| < P’?; but [Q| > |P’|; ... |Q'| < |P'| < |Q];
similarly | Q"] < IP"| < |Q].

Hence, |Q’| or {Q"} is less than { {Q| according as |P’| or |P”| is not
greater than & |Q]|. This proves (iii).

If [P, |P"| be both less than 4/R, we have from (3) and (4) Q, Q’ of
the same sign and different from that of Q.

By (B), P'4+ 4/R and P” - 4/R must also be of opposite signs, which
contradicts the assumption ( |P’|, |P"]) < +/R.

Hence, |P’|, |P”| are never both less than 4/R. ()

If P!, |P"| are both greater than 4/R, then |Q| > 2 ¥R.

If |Q| < 2+4/R, one of |P’|, [P”] is less and the other greater than
\/R, so that by (3) and (4) , Q’, Q" are of the same sign.

When Q’, Q" are of the same sign, P* + 4/R and P" < 4/R are also of
the same sign and the numerically greater of P’, P” must be positive, and so
all the quantities P’ VR, P" 4+ /R, Q’, Q" must be positive.

Therefore, Q'Q” <« R by (5) and so one of Q’, Q" is less than ¢R.

Again, if either Q' < Q", PP <0, P">0,0r Q' > Q", P’< 0, P’ > 0,
we have Q (Q" —Q") =" —P) (Q' —Q") <0, and by (ii) and (i),
Q- (Q +QMN*>4R, and |Q] > |Q" 4+ Q"| and therefore Q? > 2R.

If Q' = Q", and P’, P” be of opposite signs, then Q2 + (Q’ -+ Q")*=4R
and again Q® > 2R.

Therefore, when |Q] < 4/2R, we must have P’ or P” or both positive,
according as Q' < Q" or Q"> Q" or Q'=Q".

From (3), |QQ’| = |[+R — P |-|/R +P|. But |Q| < |P'+ /R |,
so [Q] > |vR—P'|.

If R > |Ql, then v/R > |+/R—P'|,ie., 24/R > P’ > 0; similarly
2+/R > P" > 0.

(iv) is thus proved.

A2a -
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If |Q] < 24/R, we have from (ii), (Q" 4+ Q")?* = 4R — Q? according as
Q(Q*—Q") s0. By(iv),(Q, Q) >0andif Q < 0and Q" > Q",
we have, (Q" + Q ) > 4R — Q*

e, LY ¢g:;:g
i.e., z—li—;_QQ b2 \/Q

ke, 1/_1_?.‘,_:,_1)_’ >4+ “/R '\/Q L

-F-i

Q
. Q «/’R _ WAR —Q
b ] O P‘;VJ:'VR- >‘ + Q S Q S

The same result is obtained, when Q > 0 and Q' > Q".
Hence, when Q" > Q" and |Q| < 2+4/R,
Q . . ¥R _ VAR —Q~.
Pl 4

- Similarly, when Q' << Q”, we can prove

VR T Q 2
L Q, e @ '\/4R Q.Z
that P VR <1t g 0
Again, from (i1), if |Q| > 2 ¥R,
QQ -Q) <0
i.e, Q—BQ = 0 according as |Q'| £ 1Q"|,
i.e o 0 according as [Q'] = |Q"
s 3Q _
ie, ¥+ l/QB = QLR(SE according as [Q'| £ |Q”|
LE, & -F YR o HQL—_ according as |Q'| = |Q"|
ey P Q = Pr —i_'\//R g 4as | 1>
If |Q] =|Q"|, then Q'== Q" and therefore Q' + Q" =0, which
. o /R
implies P’ “‘—QVP: =1 - \6_,

Thus (v) is proved.
2.2. Having settled the preliminaries, we procced to define the new

continued fraction development as follows :
P +4/R 7 .
Let ———~

Q

integer less than &,. Then &, can be represented in one of two forms

= £, be a surd in the standard form and @ the greatest
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& ' Q’ o e o Q” o Pfﬁ '_T""\, R
Eg=d + b LR (I) or éy=a +1 P -\/'Rm) where - Q and

Pu + X R
Q"
We call (1) the positive and (1) the negative representation of £,. Choose
a or a+ | as the partlal quotient of thf‘ new contm 1ed fraction devel opment
according as (i) Q| < |Q"| or |Q’| : = |Q"], and (ii) Q <
orQ>0if[Q] = IQ”I

After making the appropriate choice of (I) or (II), we write

are also standard surds.

"

£y o= E—%—\/R = by =+ Z}l where |¢|=1, b, is an integer, and
. PitVvR
‘ Q, '
We proceed similarly with ¢, for determining the next partial quotient,
€n +1 f_g =
and so on. Thus &, =5, + e and &, =b, + 171 - B, 4. -ad. inf. (1)

This development is obviously unique and we call it the Bhaskara con-

tinued fraction (B.c.f.), or the nearest square continued fraction, for reasons
to be noted presently.

The classical relations connecting P, Q,,, P,y Q,.y are

}H-l Pn = s Qﬂ 2) ngﬁl T €p4p Qn Qnﬂ = R. (3)
As in the ordinary theory all P’s and Q’s are integers, and by -

Theorem I (iil), the Q’s successively diminish in numerical value as long as
|Q| > +/R and so, ultimately |Q| < 1/R. When once this stage 1s reached, the
P’s and Q’s therealter become positive and bounded, P < 2+/R, Q < +/R by
Theorem I (iv). Since there can only be a finite number of positive integral P’s
and Q’s which are bounded, while the continued fraction itself is an infinite
one (£, being irrational), the periodicity of the complete quotients and
thereby of the partial quotients with the corresponding €'s is established.

Thus we establish,

Trueorem II. Every B.c.f. development of a quadratic surd is a unique
periodiz h.r.c.f.

5 € E
Noate. ‘“—{I) if EE) == l’)“ = i

by - F_% e e x (a.B.c.f.), then

— & = — by — b i z . ...1s a B.e.f. This follows immediately from

the manner of the de\dopment which takes into account the relative absolute
magnitudes and not the signs of the Q’s.
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(2) From Theorem I (v), it is easily seen that
(1) €,+; = 1, if the fractional part of ¢, is less than Lt and Q,, > 0; and
(i) €., =— l,ifthe fractional part of &, is greater than + and Q,< 0.
(3) From Theorem I (iii), it follows that if 2»! /R < |Q] < 27 /R,
then 0 < |Q,| <= +/R for some valuc of m (& #n) less than
1+ log, [Q| — % log, R.
2-3. Implications in the Conditions of the Definition of the B.c.f.
P Ja \//R Qt Qtr
If §g=—pn—=a+ S =g = s
So Q ' t P"+4/R
have |Q’| £|Q"| according as |QQ’| $|QQ"|, i.e., |P’? —R| S {P"*—R|. {4
Hence, if we are choosing the lesser of Q’, Q”, we are choosing, in effect,
the nearest of the two squares P'?, P”2 to R as the basis of our development;
and if the two squares are equidistant from R, we can obviously select either;

but to avoid ambiguity, we put in the convention that we choose Q" or Q”
according as Q is less or greater than 0.

as in §2-2, we

Thus, the name ° nearest square continued fraction’ is justified.

With the help of Theorem I (v), we mav give the following alternative defini-

Pbg/R ..
tion : A number of the form Qx -+ is said to be developed as a * nearest

square continued fraction’ or a B.c.f., when we assign to each complete
. P R . : : .
quotient, say _@%_3{¥’ a positive or negative representation according as
7% :

VR _ VAR Qi (o, Y

Q, 2Qa

its fractional part is less or greater than § -

et
|
|
R
N

|Q,,| being less (or greater) than 24/R.

‘ 3 / Af AR e () 2
When the fractional part is equal to 1 + R _ V4R —Q,

. - Q/z 2Qn

(or».‘z + éR) which we may call critical fractions, the represcntation to
7

be chosen is positive or negative according as Q,, is negative or positive.

A representation according to the above definition is called a Bhaskara
representation (B.R.).

P 4- 4+/R ' ' - AR i

ir Q\ = b, + E—’I‘ZQ\l 5 be a B.R., wiere 0 << | Q| < /R it

implies, by (4) above, [P;>—R| < [(P;-+ ¢,Q)*— R| (A)
From Theorem [ (i), we get Q,— &

e, QX Py if e Lhus., of this be
negative, |Qu— e Q < Py, since Q%41 Q< $Q% - R, Q, being less
than } [Q].
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Thus, Q; — % ¢, Q < P, implies |Q;— % ¢, Q] = ; and vice versa. (B)
Squarmc both sides of the above inequality, we get
1+ 5 Q% P+ ¢, QQi =R, iie., Q%4 + ] + %< R (C)

Conversely, it is easy to see that (C) implies (B).
Hence, (A), (B), (C), are all equivalent to one another, when 0-< |Q|< +/R.
: Similarly, we can write down another set of equivalent conditions :
P2 =Rl < [(P1+ €1 Q)*— Rl (A); |Q—1 Q] < P.. (BY);
Q+1Qu< R (C).
[tis not difficuit to verify that (C) and (C’) imply that P, and |P, + €,'Q,|
(or. |Py+ Q) are such that one is less and the other greater than +/R. (D)

Further, if one of the equivalent pairs (A), (A'); (B), (B"); (C), (C)
implying (D) holds, the following inequalities are true :

P> % 1Ql, 3 Q. (E); |P,—+/R| < |Q|, Qs (F)

For, (E) is evident when ¢ Q = — |Q|' and when ¢ Q={Q| and
Q| = Q,, (B) shows P;>|Q| —4Q; >31Q| >10Q;; when ¢ Q= | Q|
and | Q| < Q,, we get the same result from (B). (F) follows immediately
from (D), for example, if P, <+4/R, then |P,-+ Q| and |P, + ¢, Q,| are
both greater than 4/R and ¢’; in this case must be + 1.

That the condition (C") can co-exist with (C) is clear from the conside-
ration that the Q’s in the B.c.f. development ultimately become positive and
satisfy the conditions (A), (B), or (C). Since the Q’s cannot go on
perpetually decreasing after they become positive, a stage must come when
a Q is not less than its predecessor. Thus, if Q, > Q, we get

QR4 05 < Q1+ Q* < R

3. Characteristics of the Ultimate Partial and Complete Quotients.

- a T VR . -
Definition.—A surd in the standard form -° 0 R s said to be a
)

*special * surd, when its successor in the B.c.f development - ° Ql st IS
) e 4
o i 2 _1 2 -
such that Q%4+ Q> <R, Q2+ 3Q%,; <R
A surd is said to be ’ semi-reduced " if it is the successor of a * special ’
surd. The successor of a * semi-reduced ™ surd is called a " reduced® surd.

Tueorem 1II. The conjugate of a semi-reduced surd has its absolute
value less than L.

*€y = lor —1laccordingas Py< /Ror P, & V/ R.
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Proof. In the notation of the above definition. the conjugate of the semi-
P-, @ 4= R . P. A = -
reduced surd * 7LV R g Foea T \/R whose absolute value is less than
Q"-+ L Q'!+ 1
l, by §2-3 (F).
THEOREM IV. A semi-reduced surd is also a special surd.

Prooj. Let ¢ 0 VR bea special surd, and its B.R. be ziven by
o

PotvR _ b Sv+t Qo

Q_ff P:’:'!'lmll_ '\/R,
P'y+1+ 'V/R o | e'zr-—"Q“’v—’
further, let - Qe bysq+ P, .tvR (B.R.),
It is required to prove that Q2,.;--+ Q, .2 < R. (1)

Now, (1) is true when Quuy < Quiay 07 Quup | Q,).
We have, therefore, to consider only the remaining case
Quia = Qpra > Q| (2)
Since P?,— P%uy= Quuy (ep11 Qu— €500 Qpio), and
Pyea + Ppus = bf:%-l Qpi1, We have

Pm—z” Pzn-l — (Em—le_' €g+2 sz).-"bzm . (3)
If bzm‘—l - 1: Pz--‘rl - _12 erhl_ TTZ" €ni1 Q”JT 3T Epi2 Q:;-'.l = Qzl--i o E E'EJ'IQEZJ'
By hypothesis, P,y > Qi — % Ept1 Qs (4)

which 1s equivalent to Q2,., -+ } Q> <R
Thus, there is a contradiction.
Hence b,.,> 2. (4"
From (3) and (4,

Py — PT*H’ < %—I €z+1 Q:)_ € --BQ:"-:Zt
If Pyo< Py, then

P:,,_gl‘: P:: T % lew - TIz €2 Q:’:+2

>Quui— % Qs by (4)
which is what we have to prove, being equivalent to (1).

Next, if P.,., > P,.,, then
Pyis— Pors € F (e Q €2 Q.-'e-g) ) (5)
i€y Pyra + 3 e Quea< P+ $epn Q, (57
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Since both sides of (5) are positive, e,.,= — | lest (2) should be
contradicted.

Further Q,., <2 P,., =~ }e,.,Q.. by (4) (6)

Now, two cases may occur ; either
Pro+ 7 €2 Qura > Qpuy 0oF < Qpiy
the latter of which will be proved to be impossible.
For, in the latter case,
Pyia <% Qe+ Quey since eua= — 1
< £ Quna bY (2)
2o Pornt Pore<< 2Py < 3Qun
so that b,,; =1 or 2.
But, by (4'), b4, = 2
Hence, bzr+1 = 2.
. From (3), Ppua = Quui— % €11 Qo— % Qe
> Qui— % € Q, by (4)

oo Quie < €y Q, which will be impossible if the right-hand side is

negative and will contradict (2), if the right-hand side is positive.

Thus, Pyio+ 3 €pe2 Quiz < Qo
cannot hold in any case.

This establishes our theorem.

Cor. 1. The successor of a reduced surd is a reduced surd.

Cor. 2. All the complete quotients of a B.c.f. are ultimately reduced

surds.

Cor. 3. The conjugate of a reduced surd has its absolute value less

than 1.

Cor. 4. The partial quotients corresponding to -a semi-reduced and

therefore a reduced surd are always greater than 1.
For, by (E) § 2:3. P,.o > 1 Q,4, and
£ Q... so that
P:z'—:"a” Py = Quer
€., by Qi > Qun
b,y > L.
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THEOREM V. A semi-reduced surd is greater than V. L

!
In the notation of Theorem III. we have to prove
P, +4/R /5 -+ |
that TN < S Tt
Q':.M-L 2
_v4R  4/R v/5
If Q, S =
Q 1 \/S ch-’. i 2
But, P,.y >3 Qs
E'.i‘l —'___:\/R =~ ___5_7_':._1
'+ =
If P,., > Q,., obviously P'“'fél-}{—-l?-‘ > 2> \/5;—] :
.U.Ll —
If Ppoy <Qpey and Qyyy > L/ER’
V)
2118 =14 5 5 Banst VR oy
Qw 7
But b,.1 > 2.
Hence, either Py 14———\/—}?: =>2,orl < E"E 0 1E VR < 2
i 1 4+ b ol

()

(i)

(111)

in the latter case its representation must be negative, so that its fractional

part by Def. § 23 is greater than or equal to the critical fraction
oV R /4R Q o+1

/5—1 /R '5
I , which 1s greater than ¥R wihen et
2 Q‘y-i-l —Q r 1 2 vT1 2
In this case,
Ppoit vR 5 Quen
Qz:#l PU'."' g = V/R
s
— | -+ (a fraction greater than Y 5,) 1)
v5+ 1
> SS T S
2
Thus, in all cases,
E'l_*_l__"_t_\i_R N “’/5;[ 1_
Q?) g 4 =
. o V5 + 1
Cor. 1. A reduced surd is always greater than XY=

Cor. 2. All the complete quotients of a B.c./. are ultimately and there-

a1
fore in the recurring cycle greater than —---,)_...

et
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Hence, we have

THeOREM VI. The cyclic part of the Bhaskara continued fraction is
canonical.)]

THeorREM VII. If P»LT—QV ; E?’iéf VR pbe two successive reduccd

1

|

|

-
©

surds, |P, .y — P, | < Q..
If P,.; and P, are both greater than +/R or both less than /R,
|Pors— Pyl = (P ~ V' R) ~ (P.~ +/R)
< the greater of (P,, ~ +/R), (P, ~ +/R)
Z ),
IfP,.; > /R, and P,< 4/R, again, we have by (D) §2-3
R— (Pyri— Q)% €« P%,,—R, and
Py+Qx)%2—R &« R—P,2
Adding, (P,+ Pyuy) (P — Py + 2Q,) € (Pyuu+ Py) Py — P),
so that 2 (P,, — P,) < 2Q,
i.e, Py — Py < Q,.
The equality will occur only when
(Pyis— Q)%+ Pya?= 2R = P,2 4 (P, + Q)% i.e., when P%,,, + P,2= IR.
If P,u<+/R, P,> +/R, we get in the same way P,— P,.; < Q,.
In the case of equality, we write
Pyt Py=0,Qs Pyiy— Py= = Q,; so that
Pou=(0,£1) Qf2, P, =(0,F 1) Q,2,
AR = (P, +P,) 2+ (Pyey — P,‘.,)‘“’::.(b.,,,‘-’%— 1) Q,?* which implies that Q, is even ;

. 2
and '13_(_2?,, =3 b, Q.

v

Further, the surds being in the standard form, E——E—E& P,, Q,, must
v

have their highest common factor £ Q, equal to unity.
Hence, Q, =2, R=5b2+1, P, =b,F1, Ppy=0b, = 1, Qu = b,;
where P+ VR _ b,+ i@ziz_g_wj_;_,.

i| Vide p. 170, Die Lehre von den Kettenbriichen, by O. Perron, 1929,
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byt 1+ VBT _ b, i i .
) S Byt BT /byt -+ 1 of which the first alone is a B.R.

Therefore " |P,;; — P,|< Q, in all cases except when P,=0b,— 1,
b>2, R =b2+1,Q,=2. '

: R 4+ /5y .
For, it by=2, Tot- /A (1 _1*_F2x 5) is not even semi-reduced.

Q.

N.B.—The above proof applies even when the first of the given surds is
semi-reduced.

We reserve other properties of the continued fraction for a separatc
communication.
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4. Special Critical Fractions

4.1. IN §2 of our previous communicationt we have called the surds

: . VR V4R — Q* S 3 . 2 R
i) 44 e — 24/ R), and Lo . 2
(1) 3 9 0 (| Q] v R, and (i) 3 0 (€] = T4 R,
critical fractions, since they decide the nature of the representations (o be
: P+ /R ; _ 3

assigned to . -Q\ in a B.c.f. development.  Ambiguities arise when
..o P /R vR . A/4R-Q* P VAR QF
(1ii) b e X ] —an intege

Q : Q 2Q Q - 2Q ’

, S48

(]Q|< 24/R) which implies 4 R - 2, T—am odd integer, Q, 1 both

even integers, and R is the sum of (wo squares; and

, - VK P :
(1v) 1?-_{—634& e i \-85-—(—5 — 4 - an integer (| Q1>+ 24/K); but these cases

have been circumvented by appropriate conventions.

P+ 4/R ; co Pyt R .
If ——%‘be a special surd with _‘_*Ql/———-ﬂs its successor, and
i

R=0Q.2+4 1 Q2> Q2+ } Q,2 then it is easily scen thai the fractional part of

P+ R . . . . ; .
:Q\/ in its positive representation is equal to the corresponding critical
: B B s ow oy R
fraction which takes the special form } | —a where Q,= [ Q |

q—- p-+ VvR
-——-—-2‘{-{_"‘"
positive integer) is called a special critical fraction when R-= p* |- ¢* and
p>2q> 0.

Definition.—A proper fraction of the form (R a non-square

* This is a continuation of the memoir published in the Jowral of the Mysore University.
Val, I, Part LI, pp. 21-32.

+ Sce ihid., Yol. 1, Part 11, p. 26.
07
Al |
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5 P,‘-. 1 * '\/R

Sl

4.2, THreoreEM VI U is a special surd with successors

P,4 4/R Puy4+ vR Poigl- /R . P. .. /R
et v MR 28 R 8. a1 a B. c.f. development, then 1
Q?r Ow i | T-_‘l . p Q?}

g i-a VR

; P ; ‘ :
is a successor of in all cases except when R= Q%+ 4 Q% 1.

r .y p

704 | Pyagt VR
I Pl \f R | :ipe 3 Q [ )
Then, ‘ 'ﬂ : By pq -+ p:f = 2.\/ R
i Pei Qo Poret VR
o P?rll v/ R o QaHl
P, .1+ VR Pe, 1y @
Hence BLB R Y s Byt pe I
Q?Jil l+1| Pw‘l'\/R ()
where ()'}').2 | )L ()2?1 I I‘< Ra szf i 1} '«]i Qyz"‘: R.

Pyead VR Povat ¥R,
Therefore 2 ~will be a Bhaskara successor of & vR .
Q',U in 1

all cases except when
Q‘le l -l qu, o R and EE‘) B i i..
which will violate our convention in the ambiguous case.

e Porrt VR _ o 6 0Q.
Similarly, g by BT VR (2)
where Q2'}'} Gt -+ '«Ii szzf::‘; R-: Qfaﬂ o 1}- sz; -1 R.

I &= b and Q% + 5 Q%= R. we have
PPy R Q, Q= (Qy— 3 Qy #1023
since ng + Qﬁw B B> Q?};-{- 1+ .]L szs o
Q. Qpiqe 8d Py Qs & Qpiss (3)

| B e 5 e AR A b
Hence, St LR S e B
Q- Q,

e 2+ \/R e Qw—_ ;1_1' Q?;"!' 1

—

Qy

=2

(4)

Comparing (2) and (4), we have €,= —1, Qy 17+ Q1o Py Q=1 Q4
and therefore 1 Q2.+ Q,* = R.
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Conversely, if Q,2 +4Q%..; -~ R, we see that Q,> [Q,. |,
= Q,— 4 ¢,Q, ;. where ¢,Q,_; 1s negative. and

P:}_r_!_ '\/R - 2__ \/R +‘ ,I';l an- | E ™ Q':f : 2 N [ QD-] [" 2
QE: Q?; N;R 12 | Q'n -1 | =i Qv
so that epig== 1y Qpup— [Qy plvand Q2+ } Q% =R
P, IR : M .
Hence, " 17 VRO Wil fail to be a successor of P i LY when and
er (\)1"' 7

only when Q,*+ 4 Q% -.= R.

4.3. THeoreM 1X: Two different semi-reduced surds cannot have the
same Bhaskara successor unless they are conjugates of - g and 1 — g, g being
any special critical fraction.

If possible, let two different semi-reduced surds

i ! P”.r 'R
£, = PUBN_{K, e "S,U\/ have the same successor &,.; (where
2

P, > P,), while the predecessor of &, 1s & - 1.
Pyt /R | Py /R
Qy Q'

Hence Q,= + Q', the irrational part being equated to zero.

Then - an integer. (1)

But Q,, Q, are both positive, the surds being semi-reduced ; hence Q, =Q’,
and the sign to be chosen in (1) is negative, so that

P,— P',=0 (mod Q,) (2)

Arguing as in the proof of Theorem Vll‘i replacing therein P, ., by P’, but
omitting the consideration P, < R:, P, R}, which has obwou\ly no appli-
cation in the present context, we gct P 5= Pyt O (3)
Eromi ) and (3), F,=R, of P F, = Q.. and in the latter case,
P’?,2+ P,2= 2 R, from which we derive P;. - | Qy- 11— 4 Q.

[Q,,_ll + $Q, R= Q% _; + 4 Q" since we may put
P =R—|Qy-1| Qs

Thus the two surds which have the same successor are of the form

. | : ] SRR s 1
g(): 1 Q?»'_l__.‘.... Qzﬁ Qr,-; %_\/R; 7;’ - 1 Q,. e l |szQﬂ f \/R__ 1_5_ gﬂ;

where R = Q2,_,+ + Q.2 Q, is even and less than | Q,-, |-

e

* See Journal of the Mysore University, Vol 1, Parc 11, page 31,
Ala F
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Q';_J__' |Q'.-'J || i '\fl R

Obviously, O is a special critical fraction. ¢ say. &, 18

to—

the conjugate of — ¢ and &/ is the conjugate of (I — g). This proves the
proposition. |

4.4, THEOREM X: [/ g be a special critical fraction, then g ' has no
Bhaskara predecessor, (1 - g) ' is semi-reduced. and the Bhaskara successors
of gt and (1 — g) ' are respectively the conjugates of | —g and - g; the.
conjugate of 1 — g has no semi-reduced predecessor, while the conjugate of
— g has a unique semi-reduced predecessor.

G—PF ST+ T,

Let & p=2¢>0). Then a predecessor of g-1 or

2¢

(1 — g) ' will be of the form « i g, where @ is an integer.
P- 4/R p P

2> —— = " : 3 b v _._l — S W[ | — . .
Put Q a4-g: 41 Pl PR gl f L =)= - | bl i R
where R == p% - ¢=.

- p! 3 | 2 = 2 1 .2 P ‘\/R C
Then Q=2¢ < p< R p*+ 4 Q=R > Q%4 } p% so that o 1S5

special surd.

Hence g-' has no predecessor of the form a i ¢, while (I — ¢)~ ', has onc
of the form a-+ L — (1 - g).

Similarly, it can be shown that ¢ ' has no predccessor of the form a-— g,
while (1 — g)~1 has a predecessor of the form a - |-+ (I - g).
, S PR AR L E L a . B
_
conjugate of (1 —g)°

sl 01 - i e BT IR g 3p—44q

P 2p—q¢- +/R

%

. 2(! . .,_-2+. l. :
p-q+ VR conjugate of (-- g)
Since 2¢< p< 3 p— 4 ¢, the Bhaskara successors of ¢~ and (1 —g)= 1! arc
respectively the conjugates of (1~ g) and — g.

= 2

Any predecessor of the conjugate of (1 —g) must be of the forma i e A

. . i : ).}_ if —a/R
where a is an integer. For a semi-reduced predecessor, « |- / /}5 v

inadmissible and ¢ must be an integer such that p (¢-- 1) = g> 0, and
(pa— p— ¢)? is nearest to R: all these conditions are satisfied only

IS
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when a — 2, for it can be easily verified that p- ¢g< 'R, pa—p—q> v/R
when a¢> 2, and R (p ~¢)*= (2p - ¢)* R, when p-2¢. Thus the only
possible semi-reduced predecessor of the conjugate of 1- g is g~7'. But
since ¢ ' has no Bhaskara predecessor, it cannot be semi-reduced.

Similarly, the possible semi-reduced predecessors of the conjugate of
pa—ptqt 'R
P
pa— p—g> 0. and (pa— p- ¢)* is nearest to R.  Obviously a=: 2, since

when a > 2, pa— p+ g> +/R, and when a - |, ¢-< /R, while

¢ must be of the form » where « 18 an integer such that

(p+ q)*—R< R-- g% Thus the possible semi-reduced predecessor is (1 — g)~.
which is certainly semi-reduced with a “special * surd as its predecessor.

Hence the proposition is proved.
Cor. 1. Two different reduced surds cannot have the same successor.

Cor. 2. Neither the conjugatc of - ¢ nor that of (1 —g) can

J/

vV R

Q

be the successor of a standard surd of the form

5. Pure Recurring Bhaskara Continued Fractions

5.1 Definition.—A pure recurring B.c.f. is one in which the complete
quotients recur from the first.

We have alrecady seen that the complete quotients in a B.c.f. develop-
ment are ultimately reduced surds. Hence a pure recurring B.c.f. is equal
to a reduced surd.

The converse of this will now be proved,

5.2, THeoOReM Xl: The Bhaskara development of a reduced surd is a
pure recurring half-regular continued fraction.

Py+ 'R o . .
Lét gy ? iQ\ be a reduced surd and f possible, let its B.c.f.
0

development be the periodic h.r.c.f,

b -i. €4 € g S k- L
0 bl —i— [)/J 1 s h‘{. she a2 ox v amsfe b/e bt L
Whel'e g&" g éri' b -tz (]' o 0,' 1] - - o I ), I a pOSitiVC integer’ and

Since &, is reduced, &, , and &, , arc also reduced; but their respective
successors &, and &, arc equal.
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By Theorem X, Cor. (1), therefore. &, = & ., 1.

I €p o 5 Sppm v thED Epey 42 oy o Which will contradiet Theorém X,
Cor. (1), so that ez ;== €4, 1. i.e., the recurrence begins one step earlier.
This process can be cvidently continued backwards until &, is reached.
The first complete quotient thercfore recurs and the h.rc.f. is a pure

+ € €
recurring one, of the form h, ' 2
N hl bt T - bu
x

5.3. Tueorem XIl: The B.c.f. development of the standard surd

\éR (== 1) has only once term in the acyclic part.
: V'R € P, |- /R
gals 18 dp= s by b 2F o BRLY, whews ¢, =" .
{ / St’l Q } {:I L | QI
Then pl h(n Q.s € QQl -~ R— PIB;

v R being in the standard form, we may writc R--QQ’, where Q, Q’

Q

are positive integers hzwing no common factor; hence €Q; = Q" — 5,2 Q.

By Theorem I, since Q-= 2., Q; are positive and |Q, — 4 ¢, Q| = Py (1)
when Q< 3 Qu and &= L 10, Q& 0Q,=1Q «i Py by (1.
We shall now prove that | Q- } ¢ Q| = Py, which is equivalent to
% JL Q" I: b Q= by Q,
[8: Q (1 ~ byt 1 be®) <1Q,
L, (bo— 1)? < 8 -1, when Q> 4+ Q, (2)
If ey=1, 5, Q < +/R=+/QQ": L&y by« 8 » so that
(b 1)2< b= 1 <« 8 — 1. (3)
If €, — 1, we have from (1), Q;+ 3 Q <" P
. hnz Q = Q: + .I) Q = ble~
f.(’., bou - }n “+ ‘ Q
When ¢;= — 1, b, |, and so (bn—- )24 1< by®— byt 4
hence (b= 1)P= 8 ~1. (4)

Thus, in all cases, 1 Q=4 g, Qi € P (3)
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From (1) and (5), \(/)R is a special surd, and therefore &, is a semi-reduced

surd, ¢, is a reduced surd and the period of recurrence must begin at least
from &,, the successor of §,.

By Theorem X, Cor. (2), & cannot be the conjugate of - g or
1 - g, where g is a special critical fraction, ¢, is, therefore, the unique semi-
reduced predecessor of &,. Hence & must recur.

Further, ¢, cannot recur; for if &, - §,,; (say), then P, ,,==0, and
Q. Q.. := R, an impossible relation when Q,,, Q,, ., are each less than /R.

Hence the recurring period begins Irom &, and the B.c.f. development

of VR

Q has one and only one term in the acyclic part.

Cor.—b, is such that h,2 Q* is the ncarest to R among the square
multiples of Q=

5.4, Tueorem XIl: If g be a special critical fraction, then (1-- g)!
develops as a pure recurring B.c.f.

. ) -1-¢f -+ A/ R

We know that (1 —g) ' 1s of the form / | fp V'™, where B> 200,
R= p2+ ¢% 1t is sufficient for our purpose to prove that there exists a
Bhaskara predecessor of (1--g) ! which is semi-reduced, and the rest will
follow from Theorem XI.

As we have seen already in Theorem X, a semi-reduced predecessor

5 7 £F - } / .
of (1--g)* must be of the form Len H‘é L Bk R, where »n 1s an

integer (=>2) and (2n— 1) ¢— p> 0, such that its Bhaskara predecessor
is a special surd of the form
2(/6 . (21—1)(/*;— '\/R
(2n Ng—p+vR FT. ("f?“’ - 2n)q-— p (280 — 1)}
p being any integer and e- 4 1.
The condition for special surds gives
12g—3@2n— D p+gn?=ml < 2n—1)g— p, and (1)
|g—=p @~ D44 2a°% - 2a¥] - Qi— Lig—p. (2)
We have to consider four cases:
(i) 2g—4+Q2n~Npt+qgm?—n) 0.qg -p2n=1)4-q (2n*--2n) > 0;

(ii) " ) :. 3 ()-\ n e aa '.‘-.:. O:
(i) . . - 0, . >0;
(iv) LR 2 - ‘ ()q » A /‘-. 0
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14 | L) 1

e {42 BB e ; ;

5. o =i e 2 is impossible, simultancous
. o =

equality has to be excluded.

In case (i), since p/q

The upper limits (U) and the lower limits (L) of p/¢ corresponding to the
four cases are as follows:

Case U L
(Q) n:i—n-+2 T n®— 3n- 3 T
=% n o =3
(i) . "= — 14 2¥ e B 3 nE—n4 4
] 4 = . . A
REE =g -3
L N | 2 _, ol Lk . . {’)“'
P s n et 3 _ n 4 &
(i) Tl ! i n—1, ]
1 ‘“*' F R | 7 .
(v n2+n+ 1 = P g - 2F n* = mt
i s :

the starred expressions signifying lesser upper lmits (U) and greater lower
limits (L) when »n > 4,

Case (iii) is impossible since the lesser upper limit is obviously less than
the greater lower limit; since p>+ 2 ¢, n= 2 is impossible in all the four cases .
when #n = 3, 4, the limits for p/g are respectively (2 and 13 '5) and (3. 25/7)
in case (i) and (13/5 and 3) and (25/7, 4) in casc (ii), while case (iv) is in-
applicable.

For integral n = 4, the first two and the last casc are applicable, in order,
for the values of p/g in the intervals 1, 1,, I, corresponding respectively to

- L. o A | - - )

n n-- L /" - e ) 2 n I+ 2

n— 1, R, | 2)= ( X %5 : ’ - 4 s 1), closed on
n— % Iy & = % [

the right and open to the left.

Thus. for every value of p/g greater than 2, we can always [ix up a unique
value of n also greater than 2, since p/q is bound to lic in one and only one of the
rational intervals (closed on the right and open on the left), (2, 13/5), (13/5, 3).
(3. 25/7), (25/7,4), (4, 4119), (41/9, 44/9), (44/9, 5) and so on, which cover the
entire set of rational numbers greater than 2. This proves our theorem.

5.5. Before discussing further the properties of the recurring B.c.f.,
we require certain lemmas on the behaviour ol unit partial quotients in
simple continued fractions.

e o P 4/R ; g
Lemma (1): 1f & - Q\ develops as @ pure recurring simple con-

tinued fraction with a set of successive unit parual quotients preceded and
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followed by other partial quotients, then the denominators of the complete
quotients corresponding to the unit partial quoticnts other than the first
and the last of the set are less than +/R.

s P AR 4 I Pk =
1.et ot Q axn 1 ay -t as-t- - - a, -| |
[ l
+ L dogoasid » - Fag
X
=@y, Ay oy * * * Upslpgys Wry gy * * Up) aANd
X X
P,+s+ /R
$rag== r+6+; O (i[-.r.e—w-l.- 1e Quppvqs = 0 7 ps yy Ay =0y It:; 1)
= f, (say) (1)
By* Galois’s theorem of inverse periods,
‘"_'."PQr “l' VR (}: - t1s Bs v v o llps > ¢ 2 Bspes Loews nl
}'lﬂ 1 S X
e BB o il R .,
Hence, - --""a’_l_r V5= 10, bowqin v biyeg o) = fu G52yl (2)
Adding (1) and (2), (2)\15 = f-- ', so that
i L
Q,. » < +/R, according as [ = (2 f)==/" (say).
But, 2 = ld=0 Tpyaqy 7 7 ¢ | Lygogayd)
X X
(1.. 11 Oa l[',n 24 LB )
=={l. Z, ljpgg > =2 » =« )

If n— 1 =2 > 3, the second complete quotient of f is less than the cor-
responding complete quotient of /" and therefore [/ = f”, implying Q,.,,< /R

ifv=2andn >3 wehave f"=2-10,1l.4a,. « V=0l T4t~ ~) <]
and again Q, ., <+/R.

Thus for all values of v greater than | and less than n# ( >3), Q,., ,~~ v/R.
The lemma is therefore proved.

Cor. (1)—If > 2, anda@: > 2, then Ol - AR U &
B ps o i e K e R,

~ 2. and

Cor. (23 —Wn==2, and 1+4a, < a,., ,.then Q',.., < 4/R and

Q’, . » > +/R; the inequalities are reversed when | + a,., . (<<a,. while both
the Q’s are less than +/R if a,=a, ., . 4. '

* Vide pp. 82-85. Die Lehre von den Kettenhriichen, by Q, Perron, 1929,
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Lemma (2): In the simple continued fraction development of a surd
of the form g% \;p + 4 . P, ¢, being integers such that p= 2 ¢ 0, there

cannot occur a complete quotient of the same form more than once in the
recurring period; when such a complete quotient does occur, the recurring
period is symmetric, with an even number of terms, which include a central
set of an even number of unit partial quotients.

! 1 LI e ) s SN |
Let g,= 0 RVR OV VEAE g ﬁv(-*ul VK) as the o-th

Qﬂ = P Qz.- —
successor of &, Let &, be the conjugate of &, Then, §ug= - 13
l< €ﬂ< l+2‘\/5 7'-'(1._. 1. LA ,\J“'(]) or (lm) and — 1 <E{]< 0. (I)
x

By a well-known theorem of Galois. the simple continued fraction for
¢, has a pure recurring period (ag, ¢y, © = - d,), say.
b 4 %

From (1), ay=1 and if «, is the first partial quotient greater than |,
m must be odd: for, if m be cven, we have successively

(a?m T ) > (loo)s (b By = © o« =)L (lfx); “L‘A'J* Qpen = 0 0 " ) > “oo) ’
e ooy Uiggis @s = ¢ -+ ) o (lig)y which contradiets (1).
X X
Hence ‘fl} e (i[m]- s = a-;:)- : (2)
Again, Egrm - IJ'P!:EG =l - 'Ilmi)- (3)
X X

Compﬁring (2) and (3)- we have y -l == C Ty ey TR Ly Gn=day—m;

i.e., the period is-a symmetric one. beginning and ending with an odd number
of unit partial quotients.

The comparison of the complete quotients in. (2) and (3) gives
P'yh"lr ‘\/.R — P, «1—1‘_‘{)_!" 'V/R}(

Q - Q?z Ve ), L.e. P’c'f‘ = PN o b1 Qw G Qn —
v Tl
L Pyd R Poyg ah /R
lf e -1 thel‘l {.::-, e ¥ - . !
Q'ﬂ Qd 1 Q?' Qi, 5
I:)N i _L—- '\/Rl oz o E
(2” CF daa g b =g

el we e g s g, B, et ,')‘ which implies that # should be odd.

Thus, only when # is odd, @ 5 e Qn 5! and these are the only con-

secutive Q’s which can be cqual to each other, 4)
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If a complete quotient, say, £ should be of the same form as &, its
simple continued fraction development should have the same properties.
Writing Q,, Q, - + -+ - Q,, round a circle at the verticies of a regular polygon
of n+ 1 sides, we find that they arrange themselves symmetrically about
a diameter, such that the Q’s symmetrically placed about this diameter are
also equal, since Q.=Q, _.,.

The symmetry of the Qs corresponding to &, imply that Q,=Q, |
just as Q,=Q,. From (4) we see that this can happen only once and so,
there cannot be more than one ¢, of the same form as & and it occurs when

. n—+ 1 . : .
nis odd and v = ~—-J2r - In this case we realise the same symmetry of

Q’s starting from Q,, ,;» going round the circle and ending with Q,, ., as
2 >
in the first set (Q, Q. - - - - Q,).

This proves the existence of &. of the same form as &, only when

Qy:ty== 1, where r=-1,3, 5. (2k - 1), and k, n are both odd.

*)

Hence, if &, should have a remote successor of the same form as itself in
the recurring period of its simple continued fraction development, then the
recurring period must consist of an even number of symmetrically disposed
partial quotients including an initial, a central and a final set of unit partial
quotients. In order that the recurring cycle may not lose its character as
a primitive period, it is necessary that the first half of the cycle is not ‘itself
symmetrical.

Example — ol 4 %227-+824 = (1, 2, 1,4 2, 1) has a remote successor

X X
37 - A/372 T82
-’

Lemma (3): If the standard surd of the form BI{ have in its simple
1

within the recurring period of the same form

continued fraction development a complete quotient of the form ¢ =4 R,
: P
where R = p*-+ ¢% p> 2 ¢> 0, then the symmetric portion of the recurring

period of partial quotients will include a central even number, of the form
4 n— 2, of unit partial quotients: and there cannot occur any other com-
plete quotient of a similar form within the recurring period, which must
consist of an odd number of terms.

Conversely, if any simple continued fraction development of the standard
b p

/R s 3 ; ; ; : ; :
surd Y. has in its recurring period an odd number of partial quotients with
0
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a central even number (4 »-- 2) ol unit partial quotients, in the svmmetric

p . . ) dis wF R
part, then R-=p2-l-¢% p-2¢~- 0 and th: complete quotient ¥ f:’
occurs just once in the recurring period.
/R
Let b (a g, al, the, » > » By .y 2illy) (1)
Qu x

From Lemma (2), a complete quotient, say &.. of the form in question
in (1) cannot have either a; or 2 a, (obviously + 1) as its first partial quotient
so that we may write ¢é. (¢, - - 4, ). wherca, ' «y or 2a, From

X

the equality of the first and last Q’s in &, we must have Q. Q. ., in (1),
which implies, by a well-known theorem of Muir,* that k£ is odd and

Bl . ) o ) 1 B o el
g == ,"Jé l-; and in this case, it is easily scen that &, B *Q\/R, and
R P2+ LA

Further, there cannot bce another complete quotient of the same form
in the recurring period, since it is possible only when the number of terms
in the recurring period is even.

We infer therefore that g (a,H e * ¢ Mg o 2By gy 4 ¥ Bhaal

2 2 Lo
where an odd number of unit partial quotients must begin with az,; and

. . . n . 2
also an equal! odd number of such partial quotients end with a, .

._.é -

R 5. B 3 . :
Thus & must contain in its period an even number, of the form

Qo

4 n— 2, of unit partial quotients in the centre of the symmetric portion. as,
for example, v/58= (7, L. 14); /97 =(9, 1. 5, 1;. 5, 1. 18).
X X x : X

In this case, &,., is of the form 2

2
fraction begins with an odd number of unit partial quotients.

< (1), as the continued

g PR L 1) A8 kg TR VE o
- - 5 2 P 5 » s0 that,

subtracting the second from the first, 2 ¢/p< 1, and obviously p and ¢
are positive in a recurring period.

Hence.

This completes our proof.

* V:dﬂ n. 91, Perron, loc. ¢it.
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5-51. We will now point out an application of the last two lemmas to the
most rapidly convergent continued fractions. Tictze* has shown that such
continued fractions are characterised by the property that the complete

s : ) - 4/5 g
quotients are, after a certain point, always greater than I,)x » 'The B.eit.’s

e

are therefore of this class. We have proved elsewheret that the only trans-
formations (apart from the P-transformation) which convert a simple con-
tinued fraction into one of the most rapidly convergent h.r.c.f’s are the
annihilatory transformations which we have called the C,, C,. and C,Cv,
types. The effect of an annihilatory transformation applied to a unit partial
quotient is obviously to increase thc following complete quotient by |,
without affecting the preceding complele quotient.

From these considerations, we sce that a complete quotient of the form
q+p+ Vg
P
lopment (not mmvolving a P-transformation) of R/Q, (= I, and in the

will occur in any most rapidly convergent h.r.ef. deve-

5 ik _,f/ A 1 L g l};-;!- 2
standard form), when and only when cither 4 \Pf’ P et } p\, p:lg

, : , . g pde aJT

occurs in the simple continued fraction development. But 9727 VP44
p

is not a reduced surd in Perron’s senscl and thercfore cannot occur in the

; ; g ” < ; ; L S 2
recurring period of the simple continued fraction, while g \J’U TR will

occur just once in the recurring period under the conditions of Lemma (3).

Hence, every most rapidly convergent h.ref. development of
v/R/Qq (not involving a P-transformation) will contain in its period
G+ p+ Vpitg?

p
quotient corresponding to

as a complete quoticnt just once when the unit partial

a4+ VPRt

in the stimple continued fraction is
p

not annihilated.

If /R/Qg= (Qay @ys Qa0+« 8y Lpp e p + -+ @y, 2 @), where €500y

; : < I TR e -
is the only complete quotient of the form 9 ”;" L the result of applying

the C,-transformation gives the complete quotient 1 - €p 1o 9, While the
Cy-transformation will annihilate the unit partial quotient corresponding to

* Tietze, H., Mountashefte fii Mathematik und Physik. 1913, 24.
+ Ayyangar, A. A. K., Maths. Student, 1938, ¢,
I Vide p. 79, Perron, loc. c¢it.
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€440 22 and so there will be no complete quotient of the form in question.
To preserve the complete quotient, we may also apply the eclectic trans-
formation C,C¢,, provided that €', process is continued at fcast until it anni-
hilates the (2¢ + 1) — th central unit partial quotient. Hence we may state
that it is possible to have a complete quotient of the form in question in
the B.cf. development as well as in the continued fraction to the nearest
integer, but not in the singular continued fraction (all of which do not
involve the P-transformation®). '

5.6. We are now in a position (o resumc our original thread of dis-
cussion and study the nature of the recurring period of the B.c.f. develop-
VR
Qo

Type I.—This occurs when the recurring cycle does not contain any

ment of We at once recognize three possible types:

complete quotient of the form (1 g) ' 7.c., P P\/'Uz T4, ¢ being a special
critical fraction pertaining to R. Evidently, this type must occur when
R cannot be expressed as the sum of two squares, or when 4/ R/Q, does not
satisfy the conditions of Lemma (3). We will presently show that the
characteristic property of this type is that it simulates the simple continued
fraction period in its symmetries and also in the property of the last partial
quotient. e.g., Vag- T3 b g L. };-_-.-z,.
X

Type II.—This occurs when the recurring cycle contains a complete

quotient of the form b Pt VIPEE D e call this * almost symmetrical, as

P !
the symmetries are slightly disturbed. as for example, v/58 = 8-~ 4.3 3.
X X

Type I11.—This is an extreme case of Type 11, with only (wo terms in

, _ | I 1
3 eriod, e.g.. vVnrbnpt=nt1- ;
the recurring period, e.g., va*tn4-%=1n+ 3 43w |
X X
) ‘ e ik 5 G P, vR
.61, Let B, Bk o1 BE E . P
61 L o ol hl‘.---h/é- 1+ o é:w Qti ‘
X % .
- P.~ /R Ep o 3
B, s ¥ P e LN RN
< Qw , ‘&f{. i ( 1 )‘}

-

where ¢, is the v-th successor of & & &o £ B

* Vide Maths. Student. 8, 63 and Jonrnal of the Mysore University. Vol. 1, Part 11, Note (2).
The 31,



Theory of the Nearest Syuare Continued Fraction 111

Then, as in the simple continued fraction it is easily seen that

., . Bfosipy ol € €
Ly~ {)/{. — : = \ :
" 1 [)A.._ 9 b!‘f: N T - /‘)“ | h((. o |
X x
; Y P/. S i va
47, e b‘{.__ oy b I TE ey .4 : . l
éf’ Q/. 7 ( )
By Theorem VIII, . is the Bhaskara successor of £,., in all cases
except when Q% .. 1+ +Q% .-, R, which implies that ¢; .. ;= — 1,

€p-o =1 and &, _, ., is of the form (1 - g)'. g being a special critical
fraction.

When no successor (immediate or remote) of /R/Q,= 4/D (say)

3 €y E./.j' 1 G‘(. €
: b {_ 1 B i . o 2
e s Ben. o By By PR (2)

is of the form in question, we may write

El — b i E.‘_)' E;{: 1 _E,{‘.
s D=y 1i~b2i"°+b1"ltb:<]
" ; " _. B - €2 €
and by (1), 1€ (VD bg)=bp | TV <l B (3)

Since the r.h.s. is positive €€, = 1.

Comparing (2) and (3) which arc both B.c.f.’s we get b .. <+ 2b, and
the symmetries, which may be characterised thus :

b’i»"—l;‘: b/{:—'?i(?‘}';:: 2, 31 ¥OWE B A— l);
Qoo D e B, 3, = o + <o 1

g = g &y 3, 0 132
P?} == P&,“?, ('EJ‘.':'..: ], 2_| ¢ ® B oo k — })‘

When k is even, or the number of terms in the recurring period is odd, two
consecutive »'s and two consecutive Q's arc equal, viz., byo= by, Qp_g= Qy.
o 2 2 2

When k is odd or.the number of terms in the recurring period is even, we

have two consecutive ¢'s and P’s equal, viz., 1= €13 Proy=Ppiy
2 2 2 2

Conversely, if two consecutive Q’s are cqual in the recurring cycle, say,

Py R P. I +/R .
Q,=Q,_;, then &, _,= * 6 ak L Q} V™. £, so that w== k/2 and
o 71 g ;

k is even. Similarly for two consecutive P's, v== et 1 and k 1s odd.

<=
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Tueorem XIV: If vR/Q, (= 1) develops as a Type I.B.ef., R isa
non-square pesitive integer di visible by Q. and the number of terms in the
recurring cycle is odd, then R is cither a sunt of (wo Squares or d composite
number or is equal (o 3.

Let & be the number of terms in the recurring cycle.

Thet, P2y & op Q.1 Q. ~ R.oand Qua= Qe qs when © - " o ,
If e, = 1, R is cvidently the sum of two squares.

If ,.,~ — l,and Risa prime, B iy o Ry and Pos j =40, =1,
sa that Qu 14 R 5 L. VR, and therefore R is cither 3 or 5. In both these
cases, it is casily verified that & 1.

When R is neither 3. nor a sum of two squares, €,y - I, and R 1s

composite.

Cor.—When R is a prime (+ 3) and is not the sum of two squares, k 1s
even. ' '

5.62. If in the B.c.l. development of v/R/Q given in (2) of §5-61,
¢, _, happens to be of the form (1 —g) U then ¢, , is the conjugate of — ¢
(vide Theorem X), and being the predecessor of £z is also of the form +/D 4.
where w is an integer; ic., p-—d is divisible by 2¢ (p > 2 ¢ > 0).
Hence, we may put p~ (2a-1 1) ¢. R-= P2k gt qf (4n*4-4n-2),

/R . z 5 ; .
Ep o q==N-+ \éq , so that /D is of the form v4n®-|-4n-12 | 2

) A A2 L I |
The B.c.f. development ol 5 L I T
X X

This is what we have called Type 1L

5.63. As we have already seen, the recurring period in Type [ will
P4+ v+ g
p
and therefore. the recurring cycle will be merely a cyclic permutation of

that of this complete quoticnt.

contain one and only one complete guotient of the form

: i wpll T
By Theorem XIIL (1~ #) b P4 -.p\/p 2 (p=> 2 g=0) develops
as a pure recurring B.e.f. We will now proceed to study its nature.

P ] plylt wh, o Pob 'R o y ) g AR
Lel. &4 U o é,’) l !/) ¥ Mge Q’;; PO R l IP 3



Theory of the Nearvest Squarve Conlined [ractron 113

. ; 2
4 s - ;'I ane —— r s 2 e .
By Theorem X, £y =2 4 li{conjugate of — g) Fp d R
1 <. =5 e 4. €,
By =P 2 3 AR | 8 Y L |
= hrl ) brg i, hf:; C -{—'b,,(:’-- 3 9) ( fZ) ( )
X X
As in § 5-6 1, we write
. ) "y o e ) €'y
€. (— 1-- conjugate of — ¢) = — c,,“ b E,’{ £ &,‘ ' )
#( l e &) £ # 3 B adin ve ol 558500804
X X
which will be a B.c.f. development for the first (k" - 2) terms, since &', is
not of the form (1 —g)-! for v==1, 2, 3, - - - (K"~ 1).
Hence,
: ’ ’ g 5 EI.." 5 E,X:’ i) E}:t
conju Elte Or — . — l""' & L b LG ¢ « |r # I ? ) 2
'J g é # ¥ L }} F OGRS 2.h (R S PP b U .( )
From (1) the conjugate of - g- b, |- ‘,: o

2. 3)

Comparing the first (k" - 1) complete quotients and the first (k" — 2) terms
of (2) and (3), which correspond to the B.c.[. developments of the samc
number we obtain the following properties of (1):

:: ‘ - . £y - .1.

(i) — €' pbp-y=5b'y+ 1, a positive integer, so that ¢, - — 1, and
b'p.j=01+ 1.
(it} The syimeties b..—bp.., (=2, 3.5+ k—2):
VW, Wl L% v - oo k- 174
Cnie @i e B, Foon 5 = k—1);
PPy ip e @Balis o k— 1),

Q'y_,=2¢, where n=b'y_, = the integer just greater than p/y when p is
not divisible by ¢, and n = p/q otherwise.*

As in § 5-6 1, we can prove that two consecutive Q’s will be equal only
when k" is odd, and that two consecutive P’s will be equal only when,
k' is even. For example, if P’ =P’ , .

Fﬁ -;-. 5 l)"_l ] - ’ i ke 3
then érf'_____ P, Q’_\_/R . ; I(%)’i \/R P LQ’ { \/R
7t o &
e é‘:}i"—:la

so that v=Kk"— v, or v=Kk'/2, i.e., k' is cven.

5-6 4. Reverting to the B.c.f. development of /D (= /R/Q,= §,) and
following the notation of § 5-6 1, we notice that, if £, .. | (v>1), is the only

*Vide Theorem XI1l1.
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complete quotient of the form (17 ¢) in the period of D, then by - 2y

by Dy o= € 1 Py P Q Qr 2 (H
As observed alrcady, the recurring periods of vidand & .., of the
form (1 - g)! '
e ty  fa S ¥ N, !
”"'_' (,hl 1 TR o x fuiltp ,) o)
und ( ’ (.’._: (:’,:., Y (’,{.f 1 ‘ l) (B)
Bogblyy o oo W g ega By 2

are cyclic permutations of cach other.

Now ;“' “1 cannot oceur as the (irst partial fraction in (), for it will lead
&=

to Type I with bz as an odd integer, while b;  is equal to 2hq which

. N ¥ T ' . 4 " o
s a contradiction. Again if h‘ s the last partial fraction of (8) 1t will
/o _

l
contradict Theorem X, Cor. (2).

Hence Z‘"'-l will occur somewhere in the middie of the period (B),

e

!

o s ; & ; g i -
coinciding with o Say: then by (1) P’ - P indicating . k':2, and K’

s even (= k— 1). The period of Type {1, viz., (o) is of the form

£1 €hon | ot B i

D byt T, —— — P

‘\/ % !}] = & ll" f),:. g ,2 L bz1 li' b'{ [ A l: 21)0
X ik . o X

having an even number of rocurring terms and posscssing the same sym-
metries as Type 1 with the lollowing exeeptions:
hz‘. =0 2. E/.:] e !-. E;| o * l-. ,),(‘ ”:g o b‘{‘_}_]..} l, PA'."'] f- P/:,.g.!; WhiCh

2 2 E o b o

justify our characterisation of this type as *almost ™ symmetric.

It may be useful to telescope the results of this section applicable to
the case of 4/R where R is a non-squarc positive integer, in the form of a
theorem.

THEOREM XV: The period of the B.c.f. development of /R is either
a completely symmetrical 1ype simulating the corresponding simple continued
fraction, or an almost symmetrical {ype consisting of an evein number of partial
guotients, say, 2v with a central set of three unsymmetrical terms of the form
Euut ) 1

B o B b iz v
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Cor.—In the almost symmetrical type of 2 v terms, Q, is always
greater than 4.

For. Pﬂ—}— ‘\/R !

of LA ey
Q is of the form P (,!I. Vg

i ,
If g=1, VR= vpPP}1=:p+ ,)lp. which is not of Type Il. Hence

“

» $0 1hat Q.= p> 2.4,

X
g=2and Q.>4. In fact, when Q. -5, ¢ -2, 4/29 =541 I L

|
i S A o A i

(Type 1I). ) ’

We give below a table of B.c..'s e¢qual to the square-roots of non-
square integers less than 100.

R B.c.t, R B.2f.
2 | 1414 23 | 5—-3_%
1] 8-4 24 | 5
5 | 244 26 | 5%
6 | 2+%.3 27 | 44
7| 3-1_4 28 | Sttt
8 | 3~4 29 | S+t 4ty
10 344 30 bk s
11 | 3+4.44 31 i ST E ST T
12 | 34+3.4 2 3 By
13 | 4~3.4_4 33} Bgaay
14 | 4—4_¢ 34 | 6 ks
15 | 4=1% 38 | 6~ i
17 | 444 M | 6
18 | 4+4.4 B 164§y
19 | 44414,y 30 | 644yt
20 | 4+4.4 40 | 64 ko
21 S—%sd el o 41 6:1 Y44,
22 | Sedid . dovh 42 | 64 fudk
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The basic elements of the theory are now fairly complete, and it should
be obvious that the B.c.f. has a complicated individuality of its own, that
claims recognition and cannot easily be brushed aside by such remarks
as ““ Bhaskara’s method is the same as that rediscovered by Lagrange .
We have only constructed ‘“an arch, whercthro® gleam untravelled and
partly travelled regions™, such as the character of the acyclic part, the trans-
formations that convert the simple continued fraction into the continued
fraction to the nearest square, and the associated quadratic forms. These

difficult problems need further investigation.
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